Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cell Chem Biol ; 30(7): 795-810.e8, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369212

ABSTRACT

Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Aspergillus fumigatus , Virulence , Microbial Sensitivity Tests
2.
PLoS Genet ; 19(4): e1010732, 2023 04.
Article in English | MEDLINE | ID: mdl-37115757

ABSTRACT

Overexpression can help life adapt to stressful environments, making an examination of overexpressed genes valuable for understanding stress tolerance mechanisms. However, a systematic study of genes whose overexpression is functionally adaptive (GOFAs) under stress has yet to be conducted. We developed a new overexpression profiling method and systematically identified GOFAs in Saccharomyces cerevisiae under stress (heat, salt, and oxidative). Our results show that adaptive overexpression compensates for deficiencies and increases fitness under stress, like calcium under salt stress. We also investigated the impact of different genetic backgrounds on GOFAs, which varied among three S. cerevisiae strains reflecting differing calcium and potassium requirements for salt stress tolerance. Our study of a knockout collection also suggested that calcium prevents mitochondrial outbursts under salt stress. Mitochondria-enhancing GOFAs were only adaptive when adequate calcium was available and non-adaptive when calcium was deficient, supporting this idea. Our findings indicate that adaptive overexpression meets the cell's needs for maximizing the organism's adaptive capacity in the given environment and genetic context.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Calcium , Saccharomyces cerevisiae Proteins/genetics , Mitochondria/genetics , Genetic Background
3.
Org Lett ; 25(4): 571-575, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36469481

ABSTRACT

Two novel glycosylated polyketide-peptide hybrid macrolides, argenteolides A (1) and B (2), were isolated from an actinomycete Streptomyces argenteolus. Argenteolide A (1) contains a unique 5/5/5 tricyclic system in a 20-membered macrocycle. Their structures were elucidated by extensive spectroscopic analysis, and their stereochemical configurations were established through the application of chemical derivatization, J-based configuration analysis, DP4+ calculation, and electronic circular dichroism calculation. The analysis of the genome sequence revealed a plausible biosynthesis mechanism, and isotope-labeled feeding studies suggested their biogenetic origins. Argenteolides A and B exhibited moderate cytotoxicities against A549, p388, and Hela human carcinoma cell lines as well as antibacterial activities against Staphylococcus aureus and Escherichia coli ATCC25922.


Subject(s)
Actinobacteria , Polyketides , Humans , Macrolides/chemistry , Polyketides/pharmacology , Polyketides/chemistry , Actinobacteria/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , HeLa Cells
4.
iScience ; 25(12): 105659, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36505930

ABSTRACT

FK506-binding protein with a molecular weight of 12 kDa (FKBP12) is a receptor of the immunosuppressive drugs, FK506 and rapamycin. The physiological functions of FKBP12 remain ambiguous because of its nonessentiality and multifunctionality. Here, we show that FKBP12 promotes the utilization of serine as a nitrogen source and regulates the isoleucine biosynthetic pathway in fission yeast. In screening for small molecules that inhibit serine assimilation, we found that the growth of fission yeast cells in medium supplemented with serine as the sole nitrogen source, but not in glutamate-supplemented medium, was suppressed by FKBP12 inhibitors. Knockout of FKBP12 phenocopied the action of these compounds in serine-supplemented medium. Metabolome analyses and genetic screens identified the threonine deaminase, Tda1, to be regulated downstream of FKBP12. Genetic and biochemical analyses unveiled the negative regulation of Tda1 by FKBP12. Our findings reveal new roles of FKBP12 in amino acid biosynthesis and nitrogen metabolism homeostasis.

5.
Nat Methods ; 19(10): 1250-1261, 2022 10.
Article in English | MEDLINE | ID: mdl-36192463

ABSTRACT

Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast.


Subject(s)
Algorithms , Bionics , Genome, Human , Humans , Molecular Sequence Annotation
6.
Sci Rep ; 12(1): 17411, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302945

ABSTRACT

Microorganisms and plants produce siderophores, which function to transport environmental iron into cells as well as participate in cellular iron use and deposition. Their biological functions are diverse although their role in primary metabolism is poorly understood. Ferrichrome is a fungal-type siderophore synthesized by nonribosomal peptide synthetase (NRPS). Herein we show that ferrichrome induces adaptive growth of fission yeast on high ammonium media. Ammonium is a preferred nitrogen source as it suppresses uptake and catabolism of less preferred nitrogen sources such as leucine through a mechanism called nitrogen catabolite repression (NCR). Therefore, the growth of fission yeast mutant cells with leucine auxotrophy is suppressed in the presence of high concentrations of ammonium. This growth suppression was canceled by ferrichrome in a manner dependent on the amino acid transporter Cat1. Additionally, growth retardation of wild-type cells by excess ammonium was exacerbated by deleting the NRPS gene sib1, which is responsible for the biosynthesis of ferrichrome, suggesting that intrinsically produced ferrichrome functions in suppressing the metabolic action of ammonium. Furthermore, ferrichrome facilitated the growth of both wild-type and sib1-deficient cells under low glucose conditions. These results suggest that intracellular iron regulates primary metabolism, including NCR, which is mediated by siderophores.


Subject(s)
Ammonium Compounds , Schizosaccharomyces , Siderophores/metabolism , Ferrichrome/metabolism , Schizosaccharomyces/metabolism , Ammonium Compounds/metabolism , Leucine/metabolism , Fungal Proteins/genetics , Iron/metabolism , Nitrogen/metabolism
7.
Nat Chem ; 14(10): 1193-1201, 2022 10.
Article in English | MEDLINE | ID: mdl-36064972

ABSTRACT

Host-associated bacteria are increasingly being recognized as underexplored sources of bioactive natural products with unprecedented chemical scaffolds. A recently identified example is the plant-root-associated marine bacterium Gynuella sunshinyii of the chemically underexplored order Oceanospirillales. Its genome contains at least 22 biosynthetic gene clusters, suggesting a rich and mostly uncharacterized specialized metabolism. Here, in silico chemical prediction of a non-canonical polyketide synthase cluster has led to the discovery of janustatins, structurally unprecedented polyketide alkaloids with potent cytotoxicity that are produced in minute quantities. A combination of MS and two-dimensional NMR experiments, density functional theory calculations of 13C chemical shifts and semiquantitative interpretation of transverse rotating-frame Overhauser effect spectroscopy data were conducted to determine the relative configuration, which enabled the total synthesis of both enantiomers and assignment of the absolute configuration. Janustatins feature a previously unknown pyridodihydropyranone heterocycle and an unusual biological activity consisting of delayed, synchronized cell death at subnanomolar concentrations.


Subject(s)
Biological Products , Polyketides , Bacteria/metabolism , Biological Products/chemistry , Cytotoxins/metabolism , Cytotoxins/pharmacology , Polyketide Synthases/metabolism , Polyketides/metabolism
8.
ACS Omega ; 7(28): 24184-24189, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35874269

ABSTRACT

In this study, a phenylboronic ester-activated aryl iodide-selective Buchwald-Hartwig-type amination was developed. When the reaction of aryl iodides and aryl/aliphatic amines using Ni(acac)2 is carried out in the presence of phenylboronic ester, the Buchwald-Hartwig-type amination proceeds smoothly to afford the corresponding amines in high yields. This reaction does not proceed in the absence of phenylboronic ester. A wide variety of aryl iodides can be applied in the presence of aryl chlorides and bromides, which remain intact during the reaction. The mechanistic studies of this reaction suggest that the phenylboronic ester acts as an activator for the amines to form the ″ate complex″. Chemical kinetics studies show that the reaction of aryl iodides, base, and Ni(acac)2 follows first-order kinetics, while that of amines and phenylboronic ester follows zero-order kinetics. The bioactivity screening of the corresponding products showed that some amination products exhibit antifungal activity.

9.
Nat Commun ; 13(1): 3634, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752611

ABSTRACT

Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.


Subject(s)
Azoles , Fluconazole , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Azoles/pharmacology , Biofilms , Candida albicans , Drug Resistance, Fungal , Fluconazole/pharmacology , Homeostasis , Microbial Sensitivity Tests , Rats
10.
Viruses ; 14(6)2022 06 16.
Article in English | MEDLINE | ID: mdl-35746791

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, arrests the cell cycle of the G2 phase, and this Vpr-mediated G2 arrest is implicated in an efficient HIV-1 spread in monocyte-derived macrophages. Here, we screened new candidates for Vpr-targeting HIV-1 inhibitors by using fission yeast- and mammalian cell-based high-throughput screening. First, fission yeast strains expressing the HIV-1 Vpr protein were generated and then treated for 48 h with 20 µM of a synthetic library, including 140,000 chemical compounds. We identified 268 compounds that recovered the growth of Vpr-overexpressing yeast. The selected compounds were then tested in mammalian cells, and those displaying high cytotoxicity were excluded from further cell cycle analysis and imaging-based screening. A flow cytometry analysis confirmed that seven compounds recovered from the Vpr-induced G2 arrest. The cell toxicity and inhibitory effect of HIV-1 replication in human monocyte-derived macrophages (MDM) were examined, and three independent structural compounds, VTD227, VTD232, and VTD263, were able to inhibit HIV-1 replication in MDM. Furthermore, we showed that VTD227, but not VTD232 and VTD263, can directly bind to Vpr. Our results indicate that three new compounds and their derivatives represent new drugs targeting HIV-1 replication and can be potentially used in clinics to improve the current antiretroviral therapy.


Subject(s)
HIV-1 , Schizosaccharomyces , Animals , HIV-1/metabolism , High-Throughput Screening Assays , Humans , Macrophages , Mammals , Saccharomyces cerevisiae
11.
mSphere ; 7(3): e0007522, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35531664

ABSTRACT

Fungal infections contribute to over 1.5 million deaths annually, with Candida albicans representing one of the most concerning human fungal pathogens. While normally commensal in nature, compromise of host immunity can result in C. albicans disseminating into the human bloodstream, causing infections with mortality rates of up to 40%. A contributing factor to this high mortality rate is the limited arsenal of antifungals approved to treat systemic infections. The most widely used antifungal class, the azoles, inhibits ergosterol biosynthesis by targeting Erg11. The rise of drug resistance among C. albicans clinical isolates, particularly against the azoles, has escalated the need to explore novel antifungal strategies. To address this challenge, we screened a 9,600-compound subset of the University of Tokyo Core Chemical Library to identify molecules with novel antifungal activity against C. albicans. The most potent hit molecule was CpdLC-6888, a 2,5-disubstituted pyridine compound, which inhibited growth of C. albicans and closely-related species. Chemical-genetic, biochemical, and modeling analyses suggest that CpdLC-6888 inhibits Erg11 in a manner similar to the azoles despite lacking the canonical five-membered nitrogen-containing azole ring. This work characterizes the antifungal activity of a 2,5-disubstituted pyridine against C. albicans, supporting the mining of existing chemical collections to identify compounds with novel antifungal activity. IMPORTANCE Pathogenic fungi represent a serious but underacknowledged threat to human health. The treatment and management of these infections relies heavily on the use of azole antifungals, a class of molecules that contain a five-membered nitrogen-containing ring and inhibit the biosynthesis of the key membrane sterol ergosterol. By employing a high-throughput chemical screen, we identified a 2,5-disubstituted pyridine, termed CpdLC-6888, as possessing antifungal activity against the prominent human fungal pathogen Candida albicans. Upon further investigation, we determined this molecule exhibits azole-like activity despite being structurally divergent. Specifically, transcriptional repression of the azole target gene ERG11 resulted in hypersensitivity to CpdLC-6888, and treatment of C. albicans with this molecule blocked the production of the key membrane sterol ergosterol. Therefore, this work describes a chemical scaffold with novel antifungal activity against a prevalent and threatening fungal pathogen affecting human health, expanding the repertoire of compounds that can inhibit this useful antifungal drug target.


Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Azoles/pharmacology , Candida albicans/genetics , Drug Resistance, Fungal/genetics , Ergosterol/genetics , Humans , Nitrogen , Pyridines/pharmacology , Sterols
12.
Microbiol Spectr ; 10(1): e0087321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019680

ABSTRACT

The limited number of available effective agents necessitates the development of new antifungals. We report that jervine, a jerveratrum-type steroidal alkaloid isolated from Veratrum californicum, has antifungal activity. Phenotypic comparisons of cell wall mutants, K1 killer toxin susceptibility testing, and quantification of cell wall components revealed that ß-1,6-glucan biosynthesis was significantly inhibited by jervine. Temperature-sensitive mutants defective in essential genes involved in ß-1,6-glucan biosynthesis, including BIG1, KEG1, KRE5, KRE9, and ROT1, were hypersensitive to jervine. In contrast, point mutations in KRE6 or its paralog SKN1 produced jervine resistance, suggesting that jervine targets Kre6 and Skn1. Jervine exhibited broad-spectrum antifungal activity and was effective against human-pathogenic fungi, including Candida parapsilosis and Candida krusei. It was also effective against phytopathogenic fungi, including Botrytis cinerea and Puccinia recondita. Jervine exerted a synergistic effect with fluconazole. Therefore, jervine, a jerveratrum-type steroidal alkaloid used in pharmaceutical products, represents a new class of antifungals active against mycoses and plant-pathogenic fungi. IMPORTANCE Non-Candida albicans Candida species (NCAC) are on the rise as a cause of mycosis. Many antifungal drugs are less effective against NCAC, limiting the available therapeutic agents. Here, we report that jervine, a jerveratrum-type steroidal alkaloid, is effective against NCAC and phytopathogenic fungi. Jervine acts on Kre6 and Skn1, which are involved in ß-1,6-glucan biosynthesis. The skeleton of jerveratrum-type steroidal alkaloids has been well studied, and more recently, their anticancer properties have been investigated. Therefore, jerveratrum-type alkaloids could potentially be applied as treatments for fungal infections and cancer.


Subject(s)
Alkaloids/pharmacology , Antifungal Agents/pharmacology , Cell Wall/metabolism , Fungi/drug effects , Plant Extracts/pharmacology , Veratrum/chemistry , beta-Glucans/metabolism , Alkaloids/isolation & purification , Antifungal Agents/isolation & purification , Candida/drug effects , Candida/genetics , Candida/metabolism , Cell Wall/drug effects , Fungi/genetics , Fungi/metabolism , Humans , Mycoses/microbiology , Plant Extracts/isolation & purification
13.
NPJ Syst Biol Appl ; 8(1): 3, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087094

ABSTRACT

Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.


Subject(s)
Drug Discovery , Saccharomyces cerevisiae , Reproducibility of Results , Saccharomyces cerevisiae/genetics
14.
Cell Chem Biol ; 29(5): 870-882.e11, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34520745

ABSTRACT

The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.


Subject(s)
Mycobacterium tuberculosis , Saccharomyces cerevisiae Proteins , Tuberculosis , 1-Phosphatidylinositol 4-Kinase/metabolism , Autophagy , Humans , Macrophages/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Tuberculosis/drug therapy
15.
Nat Commun ; 12(1): 6497, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764269

ABSTRACT

Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), an antifungal compound.


Subject(s)
Machine Learning , Antifungal Agents/pharmacology , Candida albicans/drug effects , Genome-Wide Association Study , Kinetochores/metabolism , Systems Biology/methods
16.
J Chem Inf Model ; 61(9): 4156-4172, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34318674

ABSTRACT

A common strategy for identifying molecules likely to possess a desired biological activity is to search large databases of compounds for high structural similarity to a query molecule that demonstrates this activity, under the assumption that structural similarity is predictive of similar biological activity. However, efforts to systematically benchmark the diverse array of available molecular fingerprints and similarity coefficients have been limited by a lack of large-scale datasets that reflect biological similarities of compounds. To elucidate the relative performance of these alternatives, we systematically benchmarked 11 different molecular fingerprint encodings, each combined with 13 different similarity coefficients, using a large set of chemical-genetic interaction data from the yeast Saccharomyces cerevisiae as a systematic proxy for biological activity. We found that the performance of different molecular fingerprints and similarity coefficients varied substantially and that the all-shortest path fingerprints paired with the Braun-Blanquet similarity coefficient provided superior performance that was robust across several compound collections. We further proposed a machine learning pipeline based on support vector machines that offered a fivefold improvement relative to the best unsupervised approach. Our results generally suggest that using high-dimensional chemical-genetic data as a basis for refining molecular fingerprints can be a powerful approach for improving prediction of biological functions from chemical structures.


Subject(s)
Machine Learning , Support Vector Machine , Databases, Factual
17.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-33956138

ABSTRACT

Momilactone B is a natural product with dual biological activities, including antimicrobial and allelopathic properties, and plays a major role in plant chemical defense against competitive plants and pathogens. The pharmacological effects of momilactone B on mammalian cells have also been reported. However, little is known about the molecular and cellular mechanisms underlying its broad bioactivity. In this study, the genetic determinants of momilactone B sensitivity in yeast were explored to gain insight into its mode of action. We screened fission yeast mutants resistant to momilactone B from a pooled culture containing genome-wide gene-overexpressing strains in a drug-hypersensitive genetic background. Overexpression of pmd1, bfr1, pap1, arp9, or SPAC9E9.06c conferred resistance to momilactone B. In addition, a drug-hypersensitive, barcoded deletion library was newly constructed and the genes that imparted altered sensitivity to momilactone B upon deletion were identified. Gene Ontology and fission yeast phenotype ontology enrichment analyses predicted the biological pathways related to the mode of action of momilactone B. The validation of predictions revealed that momilactone B induced abnormal phenotypes such as multiseptated cells and disrupted organization of the microtubule structure. This is the first investigation of the mechanism underlying the antifungal activity of momilactone B against yeast. The results and datasets obtained in this study narrow the possible targets of momilactone B and facilitate further studies regarding its mode of action.


Subject(s)
Antifungal Agents , Diterpenes , Lactones , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Antifungal Agents/pharmacology , Diterpenes/pharmacology , Genome, Fungal , Lactones/pharmacology , Schizosaccharomyces/drug effects , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
18.
J Med Chem ; 63(8): 4183-4204, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32202790

ABSTRACT

Tankyrases (TNKS/TNKS2) belong to the poly(ADP-ribose) polymerase family. Inhibition of their enzymatic activities attenuates the Wnt/ß-catenin signaling, which plays an important role in cancer pathogenesis. We previously reported the discovery of RK-287107, a spiroindoline-based, highly selective, potent tankyrase inhibitor. Herein we describe the optimization process of RK-287107 leading to RK-582, which exhibits a markedly improved robust tumor growth inhibition in a COLO-320DM mouse xenograft model when orally administered. In addition to the dose-dependent elevation and attenuation of the levels of biomarkers AXIN2 and ß-catenin, respectively, results of the TCF reporter and cell proliferation studies on COLO-320DM are discussed.


Subject(s)
Colonic Neoplasms/drug therapy , Drug Design , Drug Discovery/methods , Enzyme Inhibitors/administration & dosage , Tankyrases/antagonists & inhibitors , Administration, Oral , Animals , Cell Line, Tumor , Colonic Neoplasms/enzymology , Enzyme Inhibitors/chemistry , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Protein Structure, Tertiary , Rats , Tankyrases/chemistry , Tankyrases/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays/methods
20.
FEMS Yeast Res ; 19(7)2019 11 01.
Article in English | MEDLINE | ID: mdl-31688924

ABSTRACT

Although yeasts are unicellular microorganisms that can live independently, they can also communicate with other cells, in order to adapt to the environment. Two yeast species, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe, engage in various kinds of intraspecies cell-cell communication using peptides and chemical molecules that they produce, constituting a sort of 'language'. Cell-cell communication is a fundamental biological process, and its ultimate purpose is to promote survival by sexual reproduction and acquisition of nutrients from the environment. This review summarizes what is known about intraspecies cell-cell communication mediated by molecules including mating pheromones, volatile gases, aromatic alcohols and oxylipins in laboratory strains of S. cerevisiae and S. pombe.


Subject(s)
Microbial Interactions , Pheromones/physiology , Saccharomyces cerevisiae/physiology , Schizosaccharomyces/physiology , Alcohols/chemistry , Conjugation, Genetic , Gene Expression Regulation, Fungal , Oxylipins/chemistry , Peptides/physiology , Quorum Sensing , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...